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ABSTRACT 

We establish some nodal and asymptotic properties of the solutions of nonlinear 
elliptic eigenvalue problems obtained by Ljusternik-Schnirelman theory on gen- 
eral level sets. 

1. Introduction 

We consider the following nonlinear eigenvalue problem: 

f - 6 u - c ( x ) u  = Xf(x,u) in [2, 
(1.1) 

u = 0  onOfl ,  

where fl C R N (N>_ 1) is a bounded domain with smooth boundary 0[2. 

The purpose of  this paper is to establish nodal and asymptotic properties of so- 

lutions to (1.1) obtained by Ljusternik-Schnirelman theory on the general level set 

[ lfo N~:= u~#l'2(a);~ (IVul2-c(x)u2)dx=o~, 

~ < 0; normalizing parameter I . 

We impose the following conditions on f and c: 

(A.1) f :  f i x  R--, R is continuous. 

(A.2) f ( x , - u )  = - f ( x ,  u), uf(x, u) >_ 0 for (x, u) E fl x R. 
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(A.3) 0 < f ( x , u ) U  -- q(X)U 2 <_ CIu[  p+l for some C > 0, p > I, 0 < q(x)  E 

L ' ( f l )  and for all (x,u)  E fl × {R\{0}}. 

(A.4) 0 ~ c(x)  E L ' ( O )  and c (x )u  2 <_ C S ~ f ( x , s )  ds for some C > 0. 

(A.5) h~ < X2 < h3 -< . . .  - kno < 0 < Xno+t < ' ' "  for some no E N, where ~,k is 
the k-th eigenvalue of  the following linear eigenvalue problem: 

f - A u  - c (x )u  = Xq(x)u  in t~, 
(I [ u = 0  on0f l .  

(A.6) f ( x ,  u) /u  is strictly increasing for u > 0 and every x E ft. 

Under the assumptions (A. 1) - (A.5) Zeidler [3] showed that there exist solutions 

(un(tx),),,(ot)) E I4rl'2(fl) x R (or < 0, 1 _ n _< no) which satisfy 

I u.(ot) E N~, 

(1.3) /~ t ' ( u . (~ ) )  =B.(oQ := inf s u p S ( u ) ,  
L KEAn,  a u E K  

where 

' t ' (u) := dx f ( x , s )  ds for u E ~,,l,2(fl), 

A,,,~ := [K C N~: compact, symmetric with respect to the origin, 

0 ~ K and 1,(K) -> n}, 

where 3'(K) is the genus of K, which is defined in the next section. Such solutions 

are called variational solutions of (1.1). 

It is easy to see that by (A.5), the level set N~ is not a sphere-like set but, 

roughly speaking, has the structure of a hyperboloid. Therefore, it seems mean- 

ingful to investigate the qualitative properties of such variational solutions on the 

general level set N~. 

First of all, we study the asymptotic properties of u,(c~) and Xn(c~) as c~ 1" 0. 

TH~.O~M 1. Let 1 <_ n <_ no. Assume (A.1) - (A.5). Furthermore, let 1 <1) < 

(N + 2 ) / ( N -  2) (N _> 3), 1 < p < 0o (N _< 2) in (A.3). Then 

(a) There exists a constant C > 0 such that for  all - 1  < ~ < 0 

IX.(~) - ×.1 -< C( , /=~)  ~- ' .  

(b) There exist a sequence { ~j } ( 1 <__ j )  such that c~j t 0 and u. ( ~ i ) /  -4~J --' v. 

strongly in l, pl'2(f~) as j ~ o0, where o. is the n-th eigenfunction o f  (1.2) satisfying 

I ( IVv. I  - c(x)v )dx = 

• (v.) = f t .  := inf supS(u) ,  
K E A n , _  1 u E K  

(1.4) 
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where 

4~(u) := ~ q ( x ) u 2 d x  f o r  u E L2(t~). 

Next, we restrict our attention to the one dimensional ease. Let fl = (a,b) be an 

open bounded interval. In this case, it is well known that the n-th eigenfunction 

of (1.2) has exactly n - 1 distinct interior zeroes (cf. Courant-Hilbert [1]). Then 

Theorem 1 suggests that u, (t~) has also exactly n - 1 distinct interior zeroes. Our 

result for this problem is as follows: 

THEOIU~ 2. Assume (A.1) - (A.6). Let 1 < n <_ no. Then there exists a vari- 
ational solution (u , ( t~ ) ,~ , ( , ) )  o f  (1.1), where u, ( u ) has precisely n - 1 distinct 
interior zeroes. 

RE~Aa~:s. (i) Consider the following nonlinear Sturm-Liouville problem: 

- u "  + f ( x , u )  = )~r(x)u in (a,b) ,  r(x)  >0 ,  
(1.5) u(a)  = u(b)  = O. 

Heinz [2] showed the existence of a solution (u,X) of (1.5) where u has exactly 

n - 1 distinct interior zeroes. Such a solution was obtained by using Ljusternik- 

Schnirelman theory on the level set 

S,~ := Iu E IJr'"2(a,b); fa°r (x )u2  dx = otl , 

where o~ is a positive L2-normalizing parameter. 

(ii) The continuity of u,(t~) and ~ , (u )  with respect to ct seems to be unknown 

except the special cases. 

In section 2 we give the proof of Theorem 1. Theorem 2 is proved in section 3. 

2. Proof  of Theorem 1 

We explain notations and definitions. Let X := ~ , 2 ( f l )  be the usual Sobolev 

space. For a given closed, symmetric (w.r.t. the origin) subset K C X in which 0 

is not contained, the genus of K, denoted by ~f(K), is defined by 

"y(K) := inf ln  E N; there exists h : K - ,  Rn\  101, h is continuous and odd}. 

In this section we fix the integer n (1 _< n _< no). 
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LEMMA 2.1. The eigenvalue and the associated eigenfunction of  (1.2) obtained 

under the constraints (1.4) coincide with the n-th eigenvalue and the associated 

eigenfunction of  (1.2). Furthermore, 13n = -1/)~n. 

We can show this lemma easily by mathematical induction. Hence we omit the 

proof. 

LEMMA 2.2. For all - 1 < a < O, there exists a constant C > 0 such that 

fa IVun(~)12 dx <- C(-~). (2.1) 

PRoOf. Since u.(oe) E N~, we obtain from (A.4) 

/a IVun(a)12dx= f c(x)u"(a)2dx + 23 

fa d :""(~) < XJo f ( x , s )  ds + 2ct = 13.(ct) + 2t~. 

Therefore, we have only to show that/3.(o~) _< C ( - a ) .  By (1.3) we can choose 

K C A . - i  and by (A.3), compactness of K and Sobolev's embedding theorem we 

obtain 

~.(ot) < sup dx f ( x , s )  ds < Csup dx (Is[ p + q(x)]s I) ds 
v~_K vEK 

< Csup [ [(4=~)P+~lvl p+~ + ( - a ) q ( x ) v  2] dx 
uEK d a  

_< c { ( ~ - ~ ) p  +' + ( - . ) 1  _ c ( - . ) .  

Thus we get (2.1). q.e.d. 

LEMUA 2.3. There exists a constant C > 0 such that for any -1  < o~ < 0 

(2.2) [1/k.(a) - ~n(~)/~ I _< C( ~ : ~ )  "-'.  

PROOF. Since (un(a),kn(a)) is the solution of (1.1) and u.(a) E No, we have 

by integration by parts 

2or = [ (IVu.(ot)l  2 -c(X)Un(Ot)2)dx = ~,n(Ot)[f(x,u,(ot))U,(ot)dx. (2.3) 
Ja ,/a 
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We obtain by (A.3), (1.3), (2.3), Sobolev's embedding theorem and Lemma 2.2 that 

1£ fo £.,., I I ,~/x.( ,~)-B.(~)l  = ~ f(x,u.(o,))u.(~,)dx- dx f(x,s)ds 

ISo <- ~ I f ( x ' u " ( ~ ) ) - q ( x ) u " ( ° O l l u " ( ° O l d x  

£ F  o, 
+ dx I f (x ,s )  - q(x)sl  ds 

~_ c (  lu~(o,)lp÷' dx ~_ c( 4=-s) ~÷'. 
do 

Thus we get (2.2). 

LEMMA 2.4. 

(2.4) 

PROOF. 

(2.5) 

q.e.d. 

There exists a constant C > 0 such that for any -1  < ot < 0 

IB.(,~)/,~ - 1/;%1 -< C ( , / - ~ )  p- ' .  

By (A.3) we have for u E R 

fo" L" f/ q(x)sds <_ f t x ,  s) ds <_ q(x)sds + Clul p+' 

We integrate (2.5) with respect to x to obtain 

fn 1 £  fn 1 q (x )u2dx  < 'P(u )  < ~ q(x )ueax+c  lul,+'dx. (2.6) ~ _ _ 

Let K E An,~. Then it follows from (2.6) that 

1So sup q(x )u2dx  < _ sup ~(u)  
uEK 2 uEK 

(2.7) 

'So r <- sup q ( x ) u 2 d x +  supC ]ulP+ldx. 
uEK 2 uEK dfl 

We note that there exists Ko E An,,~ such that 

(2.8) inf s u p l £  1 ~  K~A..,, u~K 2 q (x )u2dx  = U~KoSUp ~ q(x)u2dx.  
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In fact, Ko = span{ul,u2 ..... u,,_l,u,,} N N,~, where u s (I <j < n) is the j-th 
eigenfunction of (1.2). By using (2.7) and (2.8) we obtain 

-ot/~n-</3n(¢~)-< inf sup qlx)u2dx+supC lul p+j 
KEAn.¢~ ~uEK 2 uEK 

<-- sup ; q(x)u2dx+ sup C [ulP+Jdx 
u~Xo "~ u~Xo 00 

= + sup cf lulP+ dx, 
u~Ko On 

from which it follows that 

(2.9) I/~n(~) +/3.c~ I -< sup cf lul'+'dx. 
u~Ko On 

Define K~ := [ v E X; 4:-~v • Ko}. Since ~n = --I/hn, by using (2.9), Sobolev's 

embedding theorem, we get 

I1/X, - ~ , ( a ) / ~ l  < sup C f  (V=-~)P-' Ivl"+' a x _  < c ( v - = ~ ) , - ' .  
uEK; .In 

Thus the proof is complete, q.e.d. 

Consequently, combining Lemma 2.3 and 2.4 we get Theorem l(a). 
Next we shall prove Theorem l(b) by using Theorem l(a). For this purpose we 

prepare some fundamental lemmas. We put va = un ( a ) / ( ~ ) .  

L F ~  2.5. va --. Vo ( :/: 0) weakly in X as ¢~ ~ O, where Vo is the n-th eigen- 
function of (1.2). 

PROOf. By Lemma 2.2, [ v,, } is bounded in X. Hence, we can choose a weakly 

convergent subsequence. Let v0 be the weak limit of {v~]. By Sobolev's embed- 

ding theorem { v~ } converges to v0 strongly in LP+I(fl) and L2(I1). From (1.1) we 

see that 

(2.10) -Av~ - c(x)v~ = h~(c~)f(x, q-~v~)/,/=6. 

Multiplying w E X on both sides of (2.10) and integrating by parts, we obtain 

(2.11) fn (Vv~'Vw-c(x)v~w)dx= kn(~) ~ f(x''E=~v~)w/d=~dx" 
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Then it is easy to see that the left-hand side of (2.11) converges to ]o (VVo" Vw - 

c(x)voW) dx as ot T 0. By using (A.3), H61der's inequality, Sobolev's embedding 

theorem and Lemma 2.2 we obtain 

Ifof(x, ~v~)w/4-~-~dx- fnq(x)vawdx[ <- C( 4~-~)P-' fo [va[P[w[ dx 
~/(p+l) \i/(p+z) 

Hence, by letting ot T 0 in (2.11), we obtain from Theorem l(a) 

as ot 1" O. 

,2,2, ;,vo,w   c,x, vow  forw x 
which implies that Vo is a weak solution of (1.2) with respect to X = Xn. Finally, 

we show that Vo ~: 0. Assume Vo = 0. Then noting that v~ E N_~, we have for suf- 

ficiently small ~, 

fo ]Vv~,2 dx = -2 + foc(x)v2 dx < O. 

This is a contradiction. Hence, we obtain Vo q: 0. q.e.d. 

L E ~  2.6. The following equality holds: 

1 fQq(x)v~dx = - l / X . .  (2.13) 

PROOF. From (1.1) we have 

2ot = fo .Vu,,(ot)12 dx - fnc(x)u,,(ot)2 dx = X,,(ot) fef(x,u,,(ot))u,,(ot) dx, 

from which, with Theorem l(a), we obtain as ot T 0 

fnf(x, 4"-~--~v,~) va/4-:-~ dx = - 2 / X ,  tot ) - ,  - 2 /X , .  (2. 14) 

By Lemma 2.2, 2.5 and (A.3) we obtain 

I f (f(x, q=-av )va/,l=-a - q(x)v2) dx I 
(2.15) 

jo I v=l.+' dx ___ C(,t=-a)"- ' .  C( 4-~-~)p-| _< 

Since v~ --, Vo strongly in L2(fl), we get (2.13) by (2.14) and (2.15). q.e.d. 
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LEMMA 2.7. V0 E N_~. 

PROOF. Put w = Vo in (2.11). By a similar calculation as that in (2.15), we ob- 

tain from Lemma 2.6 and Theorem l(a), by letting ot 1" 0, 

f ,Vvol2dx- foc(x)v2dx= X. foq(x)v2dx=-2. 
Therefore, we get Vo E N_~. q.e.d. 

LEMMA 2.8. V~ ~ VO strongly in X as c~ ~ O. 

PROOF. Since v~ E N_l,  we obtain by Lemma 2.7 

(2.16) f n ] V v ' ~ ] 2 d x = - 2 +  fn c ( x ) v 2 d x ~ - 2 +  f c ( x ) v ~ d x = f n I V v ° 1 2 d x "  

Noting that Vo is the weak limit of v~ in X, we immediately get our conclusion by 

(2.16). q.e.d. 

As a consequence of Lemmas 2.5 and 2.8, we get Theorem l(b). 

3. Proof of Theorem 2 

In this section we consider the one dimensional ODE case: 

(3.1) - u "  - c ( x ) u  = ~ , f (x ,u)  in fl = (a ,b )  ( - c o  < a < b < oo), 

(3.2) u (a )  = u ( b )  = O. 

We prove Theorem 2 by using the idea of Heinz [2]. We begin with the prepara- 

tion of  a fundamental lemma. 

LEMMA 3.1. Let (u,)Q and  (u ,~ )  satisfy (3.1) in J = (c ,d) .  A s s u m e  that 

)~,# < 0 and  u , v  > 0 in J. Furthermore,  assume that u (c )  = v(c)  = Yo, u ( d )  = 

v ( d )  = Yl .  Then 

(i) I f  u <_ v in J, then )~ < ~. 

(ii) I f  u < v in J and  )~ = I~, then u =- v in J. 

PROOF. We put B := u 'v  - uv:  We easily obtain u ' (c )  <_ v ' (c )  and v ' (d )  < 

u ' ( d ) .  Then we have 

B ( d )  = ( u ' ( d )  - v ' (d ) ) y l  > O, B ( c )  = (u ' (c )  - v ' (c))yo < O. 
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By using (1.1) we obtain 

(3.3) 

0 < B ( d )  - B(c )  = fcd 

=ff 
fc d (dB/dx)  dx = (u"v  - uv")  dx 

I-Xf(x, u)/u + ~f(x, v)/vl uvdx. 

We put G(x)  := - ~ f ( x ,  u ) /u  + # f (x ,  v) /v .  Assume that G(x)  changes sign in J. 

Then there exists o E Jsuch  that G(o) = 0, i.e. )~f(o, u(o) ) /u(a)  = #f(a,  v (o) ) /v (o) .  

Then by (A.6) we obtain ~, _< #. Next, assume that G(x)  >_ 0 in J. Then by (A.6) 

we obtain 

--h ~ - ~ ( f ( x , v ) / v ) / ( f ( x , u ) / u )  ~ --#. 

Hence the p roof  of  (i) is complete. 

We prove (ii). From (3.3) and ~, = #, we have 

0 < - X  I f ( x , u ) / u  - f ( x ,  v ) / v l u v d x .  

Noting that h < 0, by (A.6) we obtain u - v in J. q.e.d. 

LEMMA 3.2. Let (u,),) and (v,/~) satisfy (1.1) in J = (c ,d) .  Suppose that 

~, # < 0 and u, v > 0 in J. Then 

(i) ~ = ~ i f  and only i f  u = v in J. 

(ii) ~ < # i f  and only i f  u < v in J. 

PROOF. I f  U = V, then 3, = /z is trivial. Suppose that ), = #. Let there exist 

Xo E J s u c h  that U(Xo) < V(Xo). We put 

B := sup l x ;u ( x )  < v(x)}, v := i n f l x ; u ( x )  < v(x)}. 

Since u(v)  = v(v) > 0, u (~)  = v03) > 0 and u(x )  < v(x)  in (v,B) we can apply 

Lemma 3.1(ii) to get u -= v in (v,~) ,  which is a contradiction. Hence, the proof  of  

(i) is complete. 

We prove (ii). I f  u < v in J,  then by Lemma 3.1(i) we know 3, < #. Moreover,  

i f  ), = tz, then by Lemma 3.1(ii) we obtain u -- v in J. Hence, we get ~ </z.  Next, 

assume that ~, < ~. Then we can easily see that h := v - u > 0 in J. I f  there exists 

xo E (c,d)  such that h(xo) = O, then o := U(Xo) = V(Xo) > 0 and h attains a local 

minimum at x = x0. Therefore,  we obtain 
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0 <- h"(Xo) = v"(Xo) - u"(Xo) = - a f ( x o ,  a) + ~f (xo ,  o) 

= f ( x o , o ) ( - a  + ~) < O, 

which is a contradiction. Hence, u < v in J. q.e.d. 

We consider the auxiliary variational problem which depends on a < 0 and a fi- 

nite partition a = x0 --- xj < . . .  --- xn-] -< xn = b of  fl, and it reads as follows: 

(3.4) Minimize ~I, under the constraints u E N~, u(xk) = 0 (0 < k < n).  

We shall use the following notation. Let Z := {xl . . . . .  xn-l} (xj <-- xj+~), Zn be the 

union of  such Z. Jk := (Xk-l,Xt) (0 ~ k ~ n) and 

B ( a , Z )  := { u E N a ; u ( t ) = O f o r a n y t E Z } .  

Furthermore, we denote by Q(ot, Z) the set of  solutions of  the problem (3.4). 

Problem (3.4) is deeply connected with the piecewise solution of  (3.1) and (3.2). 

Precisely, we call (u, k) the piecewise solution of  (3.1) and (3.2) with respect to ot 

and Z if (u,~) E B(ot,Z) × R and u is a classical solution of (3.1) and (3.2) on each 

Jk of  the partition given by Z. Denote by P ( ¢ , Z )  the set of  the piecewise solu- 

tions with respect to cx and Z. Finally, for u E X, the zero of  u is called a nodal 

zero iff  it is interior to fl but not interior to the set of  all zeroes of  u. Denote by 

N ( u )  the set of  all nodal zeroes of  u. 

L]~MMA 3.3. Let (u,X),(v,9)  E Q ( , , Z )  such that N ( u ) , N ( v )  C Z. PUt 

l ,  := { x ~ a ; l u ( x ) l  < Iv(x)l}, 

G := { x ~  O;lu(x)l > Iv(x)l}. 

Then 

(a) For any k, either Jt C Ii or Jt  C 12. 

(b) I f  X <<_ p < O, then v = O in l2. 

(c) I f  ~ <_ ~ < O, then 12 = 0 .  

PROOF. (a) can be proved by a similar method to that used in the proof of  

[2, Lemma 3.3]. Hence we omit the proof. (b) follows from Lemma 3.3(ii). We 

shall show (c). We assume that 12 #: ~ and derive a contradiction. For this pur- 

pose, we construct a differential curve (U~)o~<l in B(ol, Z) such that u0 = v and 

(3.5) d~l(u~)/dl; ]~=o < O. 
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Then we see that (3.5) contradicts the fact that u E Q ( o t , z ) .  Put 

~ (1 - ~ ) v  i n / j ,  

ur = I. a(~)l/2u in 12, 

where a(//) will be specified later. We put 

p := f~, ( lu' l  2 - c(x)u2)dx. 

By (b) we see that v - 0 in/2 .  Then we have 

~ (lull 2 - -- (1 + p(Ov. c(x)u~) dx ~)22ot 

Suppose that v = 0. Then 

ffl (lu'12 - c(x)u2) dx "- ~ (lu'12 - c(x)u2) dx = 2°t" 
I 

Put 

w :=f: inin/s'12. 
Since 12 ~ ~ and w E B(~ ,Z ) ,  we easily see that ~I,(w) < q,(u) =/3, which is a 

contradiction. Hence we obtain v ~: 0. Next, suppose that v > 0. We put 

We define 

2Oto := f t  (lu'12 - c ( x ) u 2 ) d x  = 2c~ - v < 2or < O. 
I 

f C'--~ u / ,/-'-~ o in I i ,  
: = 

L 0 in/2.  

It is obvious that ~ E B(*, ,Z) and I~1 < lu I in Is. Hence, we obtain ~l,(~) < 

~I, (u) =/3, which is a contradiction. Hence, we obtain v < 0. Now, we define 

p(~) := 2ot(2~ - ~2)/p >_ 0 for ~ E [0,1], 

~I'i(u) := dx  f ( x , s )  ds for u E X and i = 1,2. 
d i  i ~ 0  
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By direct calculation we easily obtain 

(3.6) d'tq (u~)/d~ I ~=o = - f t  f (x ,  v (x)) v (x) dx, 
I 

dC12(u~)/d~l~= o = 2a/v ft2 q(x)uZ dx" 

from which we have 

C 
(3.8) ~ f (x ,  v)vdx = 2od#. 

. 11  [ 

By integration by parts, we obtain 

(3.9) v = ~2 (lu'12 - c(x)u2) dx = ;~ ~ 

It follows from (A.3) and (3.9) that 

(3.10) f2qtx)u2dx < f2f(x,u)udx= v/X. 
Combining (3.6), (3.7), (3.8) and (3.10) we obtain 

d~l(u~)/d~l~= o = -2od# + 2oL/v( q(x)u2dx < - 2 a / #  + 2ct/)~ <_ O. 
G112 

Hence we get (3.5). q.e.d. 

L~.M~ 3.4. Let ot < 0 andZ  be fixed. Put B := infuent,,,z) xI,(u). Then 
(a) ~ > 0. 
(b) There exists Uo E B(t~,Z) uniquely such that ~l(Uo) =/3 and Uo >- 0 in ft. 
(c) Q (t~, Z) consists of  all continuous functions u such that l ul = u0. 

(d) There exists ~o < O such that (U, Xo) E P(a ,Z)  for any u E Q(a ,Z) .  

PROOF. Since ¢(u)  ___ 0 for any u E X, it is obvious that/3 _> 0. Suppose that 

B = 0. We can choose minimizing sequence [uj] C B(a ,Z)  such that ~ = 

limj_** ~I, (us). By using (A.4) we obtain 

(3.7) 

Since v - 0 in/2,  we obtain 

1 
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f f fo luj l2dx = c(x)u2dx + 2o~<_ dx f (x ,s )  ds + 2o~ = ~ll (uj) + 2tx. 

Since xI, (uj) --* O, for sufficiently large j ,  we see from the inequality just above 

that fnluj 12dx < 0, which is a contradiction. Hence we get Lemma 3.3(a). 

From (a) we know that {u j} is bounded in X. Hence, we can choose a weakly 

convergent subsequence of  [u j I, which is written {u j} again. Let u be the weak 

limit of  [uj] .  We show that u E B(ct, Z).  By Sobolev's embedding theorem, we 

easily obtain that u (tj) = 0 for tj E Z. By lower semicontinuity of  the norm of  X, 

we have 

(3.11) f .  [u'12dx< liminfj-'~ fn [u;[2dx" 

Since uj -,  u strongly in L2(fl),  we obtain 

(3.12) factx)u2 dx = !im fac(x)uf 

By (3.11) and (3.12) we obtain 

2 % : = ~ [ u ' [ 2 d x - f c ( x ) u 2 d x < - l i m i n f ( f  ( ' u j [2 -c (x )u~)  \ 

Assume % < o~. We put v := , f :~u/ ,[:~o ~- B(oe,Z). Since ,/=~/-,/=~o < 1, we 

obtain that ] v[ < I u ] in flo, where flo is the non-empty subset of fl in which u :~ O. 

Therefore, by uj -~ u strongly in LP+I(fl), we obtain 

*(v)  = dx f ( x , s )  ds < dx (x,s)  ds = lira dx x,s)  ds = [3, 
j ~ o o  

which contradicts the definition of/3. Hence, ao = c~, i.e., u E N~. Therefore, we 

get u E N~ and ~ ( u )  = ]3, namely, u E Q(c~,Z). 

Let (u, •), (v, #) E Q (a ,  z )  be such that u, v _> 0 in ft. Without loss of  general- 

ity, we may assume that k _< # < 0. By Lemma 3.3(c) we obtain that 0 _< u _< v in 

ft. Since xIt(u) = xI,(v) =/~, we obtain u - v in ft. Hence, we get (b). 

(c) is an immediate consequence of  (b). We can prove (d) by using the Lagrange 

Multiplier Theorem. q.e.d. 

We now investigate the continuity of the elements of  Q(a, z )  with respect to Z. 

Let Uo be the unique nonnegative element of  Q(ct,Z). For o = (01 . . . .  ,%)  E 

{ + 1 , - 1  }~ we put Un(c~,Z, o) := O, Uo(X) for x E Jk. 
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LF.m~m 3.5. Let Z i := I t#;  1 <_ k <- n} satisfy to, = limj_.** t /k for 1 < k < n. 

Then U , ( a , Z j , a )  --, U~(a,Zo,o)  strongly in X .  

PRoov. We put uj := U,(ot,Zj, a), [3j := ¢/(ui). We easily obtain 

(3.13) !im Bj --- 80 
j--*oo 

by using the method used in the proof  of  [2, Lemma 3.6]. Then it follows from 

(A.4) and (3.13) that 

Hence, we may assume that uj ~ v weakly in X. By Sobolev's embedding theorem 

we easily see that v(tok) = 0 for any tok E Zo. We put 

:= f~ (I v'l 2 - c(x) v2) dx. 2ao 

It follows from weakly lower semicontinuity of  the norm of  X that O~o - a.  As- 

sume ao < a.  Then 4-'-6v/4-:-~o E B ( a ,  Zo) and we obtain 

# ( C : - ~ V / ~ o )  < 't'(v) = lim xI,(uj) _< lim/3j _< 80, 
j ~  j ~  

which is a contradiction. Hence, we get ot o = or, namely, v E Q (a ,  Zo). Finally, 

we can easily show that v = Un (oz, Zo, tr) by using Sobolev's embedding theorem. 

Hence the proof  is complete, q.e.d. 

Now we prove the following Theorem 3.6. Theorem 2 is the immediate conse- 

quence of  Theorem 3.6(e). 

Let Z,  := {Z = {a = to < tl <"  " <  tm-I < tm = bl ;  m _< n} and Pn := 

[-)zez~ Q ( a , Z ) .  For c E R, Kc denotes the set of  all u E N~ Iq ~I,-l(c) which are 

critical points of  the restriction of  't, to N~. 

THEOREM 3.6. Assume (A.1) - (A.6). Then for  any 1 <_ n <_ no 

(a) Pn is compact, symmetric, 0 q~ P, and ~/(Pn) = n. 

(b) P,, f l  Ka,,t,~ ) :# Q. 

(c) f3,,(o~) = max,,~p ,I~(u). 

(d) B,,(ct) </~,,+l(ct). 

(e) I f  u E P,  t') Ka.t~), then u has precisely n - 1 zeroes in ft. 
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PROOF. We first prove that ?(Pn)  -> n and Pn is compact.  We put S := 

{h E R"; ~j~ffil [hjI = 1}. For h E S, we define Z(h) := { t l ( h ) , . . .  , tn_,(h)},  
where tk(h):=  a + ( b -  a)~kffil [hj[. For ore  { + 1 , - 1 }  n, put 

Oo(h) := U.(~,Z(h) ,or)  ~ P. ,  

Do := {h E S;or~hj >_ O, j  = 1 . . . . .  n}. 

Then by Lemma 3.5 we see that the mapping Oo :Do-* X is continuous and odd. 

Furthermore,  we define O : S - ,  X by O [ oo = Oo. Then it is easily seen that O is 

continuous,  odd and O(S) = P.  by Lemma 3.4(c). Hence, we obtain from 

Borsuk-Ulam's Theorem, namely, 7 (S)  = n, that 

n = 7 (S)  - ~,(O(S)) = ~(P.). 

Since 0 is continuous and S is compact in R n, Pn is compact. 

Assume that P .  N Ka.t~) = ~ .  Since Pn is compact, there exists an open set 

W ~  Ka.c~ ) in N~ such that w r l  P~ = ~ .  We know from [3, Proposition 1] that, 

under the conditions (A. 1) - (A.6), there exists a deformation d:N~, x [0,1] ~ N .  

and ~ > 0 such that the map u ~ d (u, t) is odd in u and a homeomorphism from 

N~ onto N~ for any t E [0,1 ]. Moreover, 

ql(u) <_ t3.(a) + e and u E N ,~ \W imply ' / t (d(u,1))  _ f3.(ot) - e. 

Hence we obtain 

'Y(Pn) <-<- ?(d(Pn, l ) )  < ?(N,~ 1"3 ~I'-l(-co,/3.(o~) - e)) < n, 

which is a contradiction. Therefore the proof  of  (b) is complete. 

We put b. := maXuep~ ¢g(u). Since 3,(P.) -> n, it follows from the definition of 

/3. (~) that 

/3.(c~) ___ max ~ ( u )  = b..  
uEPn 

On the other hand, for any e > 0, there exists A C A~,~ such that 

(3.14) sup ,It(u) <_/~n(a) + e. 
ucA 

Since P .  is compact,  there exists w E P .  such that ~I,(w) = b. .  Let Z = 

{t l , . . . , t in-l}  (m <_ n) be the parti t ion such that w E Q(c~,Z). We define 

E : X - ~  R m-I by 

E(u)  : =  ( U ( t l )  . . . . .  U(tm- l ) ) .  
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I f A  CI B(o~,Z) = ~3, then we obtain 3,(A) -< m - 1, which contradicts A E A,,~. 

Hence, A tq B(o~,Z) ¢ f~. Let v E A f l  B ( a , Z ) .  Then we obtain by w E Q ( a , Z )  

that 

b. = ~I'(w) _< q/(v) < sup q/(u) -< 3 . ( a )  + e. 
uEA 

Since e > 0 is arbitrary, we get b. <_ 13. (c¢). Hence the proof  of  (c) is complete. 

Let Vl E P.  I"1Kt~.¢~) and vl E Q(ot, z l ) .  For s E f~\Zl ,  we put Z2 := ZI LI {s}. 

It is clear that u(s)  #: 0. Let vz E Q(ot,Z2). Then it is obvious that vz E B(c~,Zl) 

but, by Lemma 3.4(c), vz E Q(c¢, Zl ), since vz (s) = O. Therefore, we obtain by (c) 

that  

~,(c~) = ¢ ( v l )  < '~'(v2) - max ' t , (u)  = 3,+l(CO. 
u~P,+l 

Hence the proof  of  (d) is complete. 

Suppose that -y (P , )  _> n + 1. Then by definition of 3,+1 (or) and (c) we have 

3 ,+l (a )  <- sup ~t,(u) = 3 , ( ~ ) ,  
uEPn 

which contradicts (d). Hence the p roof  of  (a) is complete. 

Finally, let u E P~ I"1 K~,¢~ and m be the number  of  zeroes of  u in ~. Since 

u E Pn, we obtain m ___ n - 1. On the other hand, since u E Pm+~, by using (c) we 

obtain 

3,(c~) = ~ ( u )  _< max ~ ( v )  =3m+l(Ot).  
V~Pm+l 

Then from (d) we obtain n _< m + 1. Hence we get m = n - 1, which is the con- 

clusion of  (e). q.e.d. 
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